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Abslract

This paper describes a feed forwars neur al net approach for detection of abnormal
system behavior based upon sensor data analyses. A new dynamical invariant
representing structural parameters of the system is introduced in such a way that
any structural abnormalities irithe systermn behavior are detected from the
corresponding changes to theirivariant Potential for application of this approach
is discussed by analysis of results fiom telemetry monitoring of spacecraft systems

for NASA interplanetary operations.




1. Introduction

Sensor data is a key source of information concerning the state and
operational performance of the underlying system. When this data is presented in
the form of a time series, two impor lant problems can be posed: a) predicting future
values of a time series from currentandpast values, and b) detection of abnormal
behavior in the underlying systcim. I most of the existing methodologies!'?, a
solution to the second problemis based upon the solution to the first one:
abnormal behavior is detected by @nalysis of the difference between the recorded
and the expected/predicted values of the time series. Usually such an analysis is
based upon comparing certain pattcrig such as the average value, average slope,
average noise level, the period andphase of oscillations, and the frequency
spectrum. Although all these characteristics may have some physical meaning
when a time series represernts a caliain MESSage in signal processing, they can
change sharply in time when a time series describes the evolution of an underlying
dynamical system such as the power system of a spacecraft or the catalytic
converter of a car. Indeed, in the latier cases, a time series does not transmit any
“man-made” message, and therefore, it may trove different dynamical invariant,
In other words, it is reasonable to assume that when a lime series is describing the
evolution of a dynamical systemn, its invariant can be represented by the
coefficients of the differential (orthe time-delay) equation which simulates the’
dynamical process. Based upon this idea, we have developed the following
strategy for detection of structural at normalities: a) build a dynamical model which
simulates a given time series, b)develop dynamical invariants whose change

manifests structural abnormalitics.




2. Dynamical Model

In this paper we deal will the sernisor data in the form of a time series which
describes the evolution of an unde: lying dynamical system. It will be assumed that
this time series can not be apjroximet ed by a simple analytical expression, and
therefore, it can be considered as @ realization of an underlying stochastic process
which can be described onlyinterniisof a probability distribution. However, any
information about this distribution ¢z not be obtained from a simple realization of
a stochastic process unless this process is stationary. (Then averaging over
ensemble can be replaced ty averi:ging over time))., But an assumption about the
stationarity of the underlying stoctwislic process would exclude from consideration
such important components of the dyniamical process as linear and polinomial
trends, or harmonic oscillations. ‘1hatis why we have to deal with non-stationary

processes.

Our approach to building;; dyianiical model is based upon progress in three
independent fields: nonlinear dynamics, theory of stochastic processes, and

artificial neural networks.

From the field of nonlinear dynamics, based upon the Takens theorem®, any
dynamical system which converges to an attractor of a lower (than original)
dimensionality can be simulated (with a prescribed accuracy) by a time-delay

eqguation

x(9) = Fx(t - 1), x(@ - 21),...x{1 - m)) (1),

in which x(t) represents a giveniime senes, and 1 = constant is the time delay.



It was proven that the solutiontol:q.(1 ) subject to appropriate initial

conditions converges to the onginal tinie series:

x() = x(1,), x(1,). . . .etc (2)

when m in(l) is sufficiently lat ge:.

However, the function f, &s well as the constant ©t and m, are not specified

by this theorem.

But the most “damaging’ lirnitation of the model (1) is that the original time
series must be stationary, since it represants an attractor. 1 his impies that for non-

stationary time series the solution to (1) r-nay not converge to (2) at all.

Previously statistitions have de veloped a different approach to the same
problem': they approximated a slochiastic process by a linear autoregressive

model:

x( = e x(t - 1)+ ax(t ?)-. sa (x,-n)+N (3)

where aare constants, and N rep: esents the contribution of a noise.

On first sight, Eq.(3) appears &« a particular case of Eq.(1) when F is
replaced by a linear function, &#nd1 = 1.t fowever, it actually has an important
advantage over Eq.(1): it does not enforce stationarity of the time series (2). To
be more precise, it requires cerlain transformations of (2) before the model can be
applied. T hese transformations ere SUpposed to “stationariz.e” the original time
series. These types of transformeations follow from the fact that the conditions of
stationarity of the solution to b g (3) coincide with the conditions of its stability, i.e.

the process is non-stationary whien




1G> 1 (4)

where G; are the roots of the characierislic equation associated with Eq.(3).

The case | G| >1is usually excluded from considerations since it corresponds
to an exponential instability whichis unrealistic in physical systems under
observation. However, the case|G, | 11s realistic. Real and complex conjugates
G, incorporate trend and seasonal components, respectively, into the time series

).

By applying a difference oporéator:
Vx, = x, - x,_, = (1 - B, (5)

several times (where B is the: shift operator), one can eliminate the trend from the

time series:

Xp X, _psen€lC (6)

By applying a seasonal difference oper ator.

V:xr:(]'B:)xr:xt-s (7)°

one can eliminate the seasonal conpor writs from the time series(6).

Unfortunately, it is not known in advance how many times the operators (5)
or (7) should be applied to the origingl time series (6) for their stationarization.
Moreover, in (7) the period S of it e seasonal difference operator is also not

prescribed. In the next section we wili discuss possible ways to deal with these




problems. Assuming that the: time sexies (6) is stationarized, one can apply to them
the model (1):

WO =1t - 1), At - 2),.. 0t m) | 8)
where
Yo¥y oo .ol (y, = x, -- X)) (9)

are transformed series (6), and 1= 1,
After fitting the model (8) to the time series (6), one can return to the old variable
X(t) by exploiting the inver s¢ operators (1 -B)*and (1 -B®)". For instance, if the

stationarization procedure is performed by the operator (5), then:

x(?) = x(1 - l) + FAx(rt 1) 2@ - 2), [x@ - 2)-x(-3)].. ..etc} (lo)

Eq.(1 O) can be utilized for i edictions of future values of (6), as well as for
detections of structural abnormuililics. | fowever, despite the fact that Eq.(8) and
(10) may be significantly differeint, thei structure is uniquely defined by the same
function F. Therefore, struclural abnormalities which cause changes of the function
F, can also be detected from | q.(8) a11¢ consequently for that particular purpose

the transition to Eq. (10) is not necessary.

It should be noticed that, stiictly speaking the application of the
stationarization procedure (5) and (*/ ) to the time series (6) are justified only if the
underlying model is linear. However, stationarity criteria nonlinear equations are,.
more complex than for linear ones, in the same way as the criteria of stability are.
Nevertheless, there are numericsl evidences thal even in nonlinear cases, the
procedures (5) and (7) are usefulln @ sense that they significantly reduce the
error’], i.e. the difference betwecn the sinulated and the recorded data if the latter

are non-stationary.




3. Model Fitting

The models (8) and (10) Which hiive been selected in the previous section
for detection of structural of abnornnalities in the time series (6), have the following
parameters to be found from (6): thc functiont, the time delay T, the order of time
delays m, the powers ml andm of the difference (1-B )™ and the seasonal

difference (1 - B")"and the period S of the seasonal operator.

If the function F is linear, the: simplest approach to model fitting is the Yule-
Walker equationst which defines the autoregressive parameter o, in Eq.(3) via the
autocorrelations in (6). However, irimany cases the assumption about linearity of
the underlying dynamical system leads to poor model fitting, and therefore, it is
more practical to assume from the beginning that F is @ nonlinear (and still
unknown) function. In such a posedness, probably, the best tool for model fitting
is a feed-forward neural net which approximates the true extrapolation mapping by
a function parametrized by the synaptic weights anti thresholds of the network’
There is a rigorous proofl’! that any continuous function can be approximated by a
feed-forward neural net with only one hidden layer, and that is why in this work a
feed-forward neural net with one hidden layer was selected for the model (8) fitting.

The model (8) is sought in the following form:

Ny =o {}: Wijo
;

where W; and w;, are constant synisplic weights, o (x) = tanhx is a sigmoid function,

)k:wf" Wt - Ac)”’ an

and y(t) is a function which is supposadio approximate the stationarized time series

(9) transformed from the original t ine series,

The model fitting procedure is besed uporn minimization of the error measure:,
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EW,, wp) = _;_E y! @ - u{): H"yo[ )k: W, - lﬂ))
Lp J

} (12)

where y¥(t) are the values of the lime: scries (9).

The error measure (12) repr esents the contribution of random components
in the time series. There are two basic sources of such components. The first
source is chaotic instability y of thie underlying dynamical system; in principle, this
component can be detected by applying the stabilization principle®™. The second
source is physical noise, imprecision of the measurements, or human factor (such
as multi-choice decisions ineconomicz! or social systems). I-his component can
be identified by applying aspecialtype of dynamics (called terminal, or non-

Lipschitz-dynamics)®!.

In this paper we will assume: thatk: represents a variance of a mean zero,
(Gaussian noise.

Since there is an explicil analytical dependence between E and W,, w,, the

ij
first part of minimization can be preformesd by applying back-propagation. However,
further minimization should include: rnore sophisticated versions of gradient decent

since the dependence E (T, m, i, w,, S) is too complex to be treated analytically.

4. Criterion of Structural Abnoimalitics

As noted in the introduction, there are two causes for abnormal behavior in
the solution to EqQ.(11): changes it external forces or initial conditions (these
changes can be measured by | yajunov stability and associated with operational

abnormalities), and changes inhe paramaters Wy, W, i.e. changes in the structure




of the function F in Eq.(8). (This chianigos are measured by structural stability and
associated with structural abnormalities), and changes in the parameters W, w,
i.e. changes in the structure of the functionFint:q. (8). (These changes are

measured by structure stab ilily &nd associated with structural abnormalities)

In this paper we introduce: the following measure for structural abnormalities:

&

G |, - W e e o) (13)

where W; and w;, , are the nominal, or "t ealthy” values of the parameters, and W,

W, are their current values, Obvicusly, if
¢ =0, 0r¢<|c| (14)
where € is sufficiently small, then there is no structural abnormalities.  The

advantage of this criterion is inits simplicity: it can be periodically updated, and

therefore, the structural “health” oi the [rocess can be easily monitored.
The only limitation of this criterionis that it does not specify a particular
cause of an abnormal behavior. Obwviously, this limitation can be removed by

monitoring each parameter W, w,,  scparately.

5. Application to Voyager Soler Pressure Data

The methodology preseined it 1this paper has been applied to simulate the
dynamics of Voyager solar pressur ¢ based upon the sensor data, The reference
distribution of this data is showninfig 1. The original data first required two
simple differencing passes for stationariz ation (Fig.?). I-his data was fed then into
the network at which point the feed-forward neural network learned the structural

parameters of the system within two window iterations where a window consisted




of approximately 100 dats peints.In this neural system, the simulated data was
fitted into the stationarized data with &: convergence? parameter value of 1 and a
total of 20 neurons in the hiddenlayei. Fromn fig. 3, we can see that the model

simulations closely represont the actuil Voyager data.

Since there is no apparent structural abnormalities in the original data, we
therefore perform a procedure to test the sensitivit y for the parameter when faced
with structural abnormalities. ‘1 his consists stretching in time the last third of the
original data and running the alter ¢d data set through the neural system (Fig. 4).
From Fig. 5, the structural changce was immediately detected by a sharp change
in the ¢ parameter. Thus the systern becomes highly sensitive for detecting

structural abnormalities.

7. Concluding Remarks

A combined feed-forward ne:uir al-network and nonlinear dynamics approach
to modeling stationary and non -stationar y time series was investigated. It was
demonstrated that preliminary stetionarization of the original data significantly
improves the accuracy of sitnulationis A simple and reliable criterion of structural

abnormalities was introduced &nd velidi:ted.
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